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Locally excited coupled map lattice: Phase transition from a local to a global response
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A coupled map lattice system is perturbed by a local injection. The system response to the external excita-
tion is investigated. We find a phase transition from local response to a global response. As global response
functions the motions of the sites far from the forced site show critical on-off intermittency. The implication of
the global response to the physical transportation behavior is addréS4663-651X96)11108-9

PACS numbd(s): 05.45+b

[. INTRODUCTION associated with a spatiotemporal intermittency, is observed
when we inject and increase the local excitation. In Sec. lll
In recent years, much attention in the field of nonlinearwe consider the asymmetric CML with nonze@ Similar
science has been shifted to spatiotemporal systems. The dsehavior is also found. An interesting excitation transport
tremely rich behavior of bifurcations, patterns, spatiotempoforced by gradient bias is clearly seen. In Sec. IV a local
ral chaos, and fully developed turbulence, and the control oéxcitation is injected into a spatiotemporal chaotic state; we
these objects have become rather active topics. As the sinagain find the transition from local response to global exci-
plest model of spatiotemporal systems, the coupled-mapation. Some discussion about the mechanism underlying the
lattice system(CML) has been extensively investigated overintermittency effect will be given in Sec. V.
the recent decadgl—9]. On one hand these CML systems
can be regarded as time-space discretizations of continuous ||. SPATIOTEMPORAL INTERMITTENCY BASED
extended physical systems. Therefore, from the investiga- ON A T2S2 STATE OF SYMMETRIC CML
tions of these simplest models we can understand the rich _
behaviors of much more complicated realistic systems. On The stable T2S2 state &t=300, €=0.15, andC=0 is
the other hand, some practical systessch as generation Shown in Fig. 1a), which can be asymptoticallyrather
iterations of biology population distributiprmay be repre- quickly) approached from different random initial condi-
sented direct'y by Space_time maps, then the CML mode|§|0ns. Now we start to ":]Vesugate the I’eSponse_ of the SyStem
are of great importance in their own right. However, onet0 an external perturbation. To do that we modify Eds.to
point of theoretical importance and practical significance _ . : L
has, to our knowledge, escaped the scope of numerous inves- Xn(1) it Xpy()+ 08 5+1=1,
tiga_tior)s: howl does the CML system respond to an exte_rnal Xn(i)= X,()+ 08 as1 oOtherwise,
excitation or, in other words, how does a local perturbation ’
alter the entire nonlinear spatiotemporal system through cou-

plings. The present paper is devoted to this subject. o . € .
Specifically, we use the following model as our working Xn+1(1)=(1=€)f (Xn(D))+| 5 +C|T(xa(i—1))
example:
6 ;.
e + E—C)f(xn(l +1)). 2

Xp+1(1)=(1=€)f(xq(i))+

5 +c) f(x,(i—1))

In Egs. (2) the constant control parameter represents the
€ . strength of the external perturbation injected to the
+(2 C) fa(i+1)), @ (L/2)+1st site. In Fig. 1 we show the system responses for
different . Several features are interesting as well as sur-
where the mapping functiof(x) is defined as the logistic prising.
mapf(x) =ax(1—x). We use a periodic boundary condition  In Fig. 1(b) we plot the asymptotic behavior of the forced
Xn(i)=x,(i+L), with L being the lattice length. The quan- site x,(151) againsto. A clear period-doubling cascade
tities e andC have clear physical meanings; the former rep-leading to chaos is found. In the chaotic region we find ob-
resents the diffusion strength while the latter the asymmetriwious period windows. All other unforced sites also follow
force, or say, a gradient bias. Changiage, and C, the the characteristic bifurcation behavior of the forced site. In
system exhibits very rich patterns, which have been demorFig. 1(c) x,(145) has similar bifurcation features like Fig.
strated in numerous papers. In Sec. Il we focus our attentioti(b), which can be clearly seen by a proper amplification of
on a symmetric CML, i.e., on the parameter regmr4, the plots. The most interesting point is the existence of pe-
C=0, 0.1394€<0.1938, where the system has a singleriod windows[for a more clear view, see Fig(d)] in the
time-period-2 and space-periodcP2S2 attractor with even large (i.e., largeL) CML system. To date, for large CML
L. A phase transition from a local response to a global onesystems, to our knowledge, systematic appearances of period
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FIG. 1. (a) The asymptotic state of the CML, Eq4) [or Egs.
(2) at ¢=0], ata=4, e=0.15C=0, andL=300. The same pa- FIG. 2. (a) x,(i) data plotted for each site in 1500 iterations at
rameters are taken in Figs. 1-3. The initial condition is that eacty = 0.048 after the transient process. The envelope of the deviations
site takes a random number in the intery@l 1. The figure is from T2S2 is frozen.(b) The same aga) with o replaced by
plotted by 300 iterations after the transient process. A single stablg=0.062. The deviation envelope is also frozen and the response of
T2S2 attractor is identifiedb) x,(151) vs o after the transient the system to the excitation is locdk) The same asa) with
process is excluded. At=o.=0.0622, a crisis of chaotic region ¢=0.063. The plotted iterations are fron=42000 to
expansion occurs(c) X,(145) vso after the transient process is N=42300. Clusters of bursts from the basic state(tmfcan be
excluded. Aso<o, the deviation from the T2S2 state ) is  Observed.(d) The same asc) with plotted iterations being from
small. However, after> o, a burst of deviation is observeft) n=1.42<10° to n=1.423x 10°. The clusters of excitons move too
A blowup of a periodic window region itth). The same window far away from the forced site.
can be seen in chaotic regions for each site in the same parameter
regime. tions, the envelopes are asymptotically approached and fro-
zen forever. The amplitude &&(o)=(A;,A,) depends on
windows in the chaotic region have not been fouagart the forcing strength. The decay expongns independent of
from some parameter regimes of extremely weak couplingthe values ofr andL (if L is large enough and is not too
e=0 or e<1). By perturbing a single site we find period large, of coursg but depends og, a, and the way in which
windows in a rather regular way. These windows are dythe sites couple to each othée.g., nearest-neighbor cou-
namically stable against arbitrary random initial preparationgling, or next-nearest-neighbor coupling, or)etét the pa-
and structurally stable against small perturbation of controfameters of Fig. 1 we fingg~0.52. Actually, the exponent
parameters. B can be calculated exactly. The main points for computa-
Comparing Figs. (b) and Xc), it is clear that the constant tions are the following. First, d$—L/2—1| is large, linear-
forcing at the central site drives the forced site as well aszation of the derivations from the period-2 state can be
unforced ones away from the unperturbed T2S2 state of Figzalid. In the linear case margin certainly maps to margin.
1(a). However, the deviations of the motions of different Therefore, the margin is a stationary period 4 state of the
sites from the unperturbed state are different. Assystem. Inserting E(23) to the linearized Eq(l) we imme-
0<0.0622, the farther a site locates from the forced site, theliately obtain
smaller the deviation. This feature is clearly shown in Figs.
2(a) and(b). Actually, for the (/2+ 1+ m)th site the devia-
tion is no longer visible agn>10, no matter whether the
motion is periodidFig. 2@)] or chaotic[Fig. 2(b)]. The in- [ae(1—2x;)sinhB+1]A;+a(l—e€)(1-2x;)A,=0,
fluence of the external excitation is local. It can affect only 4
the motions of the sites in the neighborhood of the forceqeadin to the condition
site. The deviations caused by the forcing damps exponen- 9
tially as the site distance increases. An empirical formula

a(l_ 6)(1_ 2X1)A1_ [aE(l_ 2X2)Sinhﬁ+ 1]A2: 0,

a(l—e)(1-2xy)
[ae(1—2x;)sinhB+1]

—[ae(1—2x,)sinhB+1] B

a(l—e)(1-2x,) |
(5

Ix(L/2+1+m)—X|<|A(o)|e P™, 3

well fit the actual deviation from the lower line of Fig(dl

for both periodic and chaotic states. In E8), X=(X;,X,) is  from which g can be given analytically. Aa=4, e=0.15,
the T2S2 state. The envelopes of the deviation shown in Figve have x;=0.458 414 andx,=0.898 729, and then get
2(a) or 2(b) are time independent. After short transient itera-B8~0.52, which is confirmed by numerical simulations.
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tried L=500 andL =1000. In all cases, we find all sites can

25x10° & ! bi be excited, though it takes a long time for the excitons to
r 1 propagate to the sites very far from the central site. On the
0.6 contrary, in Figs. &) and 2b) the influence is purely local,
15X 10%—— — = as we described previously. The only difference between the
oL _ 3 : control parameters of Figs(® and 2b) is thato=0.062 for
— - ol the latter and 0.063 for the former. A slight change in the
5. 0% 104 - - 1 0.2r control parameter induces an essential change of the system
S o L z behavior; this convinces us of the existence of a phase tran-

0 100 5200 300 O ox10°m 6x10! 1x10° sition from a local response to a global response. We would
like to emphasize that the property of global response is of
d crucial importance for realistic network systems. If global
response is identified, on one hand, one may detect an exter-
nal signal from a large distance; on the other hand, one may
effectively influence and control large extended systems by a
local injection. In both cases the applications of this global
response are unlimited.
To further investigate the characteristic features of the
motion of the system foo> o, we record the time evolu-
P 1078 g | tions of the 151st and 141st sites in Figéh)3and 3c). The
0 2x10* n 6x10* 1x10° 1 10 n 100 1000 motion of (c) is of typical on-off intermittency10—14; i.e.,
it stays at the “off” state for a very long time, and suddenly
FIG. 3. (a) T; plotted against. T; is the iteration number for the departs quickly from, and then returns quickly to, the “off”
ith site to be excited for the first timgA site is regarded to be state. The “off” state is defined by Eq3). In Fig. 3d) we
excited agx,(i) —X|>0.03, wherex is the T2S2 state of the unper- plot the scaling property of the probabiliy, for the 141st
turbed systen}.The T; behavior is very similar to that of random and 131st sites, wher@, represents the probability of the
walks. (b) x,(151) plotted vsn; the motion seems to be of on-off |aminar phase of length, namely,P,=M /N, with N being
intermittency.(c) The same ab) for x,(141), a motion of typical  the total number of the segments of the laminar phase, and
on-off intermittency.(d) The distributions of laminar phases for M, the number of that of length. The threshold for the
141st and 131st sites. A perfeets power-law decay is identified. |aminar phase is defined as
The solid and dashed lines represent those of 141st and 131st sites,

respectively. Ix(i)—x(i)|<7=10"3, (6)

-
. '.o
sy

o Sx(41) S

The final and the most important feature is that there exwhere x(i) is given by Eq.(3), i.e., the “off” state. The
ists a characteristic change, or say, a phase transition in trgefinition of the laminar phase for the other cases is also
system response to the excitation, which happens ajiven by Eq.(6). But the “off” state x(i) is different from
0.=0.0622. The system behaviors fex o, ando> o, are  the others. The scaling curves show perfe@/2 power-law
totally different[see Figs. &) and Zc)]. In the former case, decay of the connected time length of the off state; that fur-
the sites far from the forced site stay in the vicinity of the ther confirms the critical on-off intermittency. We have also
unperturbed T2S2 state, and the system response to the ared i=121 andi=101, and got the same scaling curve.
citation has a local nature, obeying the restriction BB).  There are several points worth making for the on-off inter-
However, in the latter case, even the sites far away from thenittency in our model. First, to drive the system to an on-off
forced one may wander in the entire variable space. The lawntermittency state we vary a constant foreerather than a
of local response of E((3) is completely broken. The sys- noise force; thus the control parameterstatic rather than
tem response to a local injection is global. In order to con-dynamic Second, when the on-off intermittency occurs the
firm the transition from a local to a global response, weoff state of the system ispatiotemporal chaogather than a
present Figs. @) and 2d), where we plot the system state static or periodic state. This basic chaotic state offers a dy-
for two different time periods in the same manner as Figsnamic origin for the on-off intermittency. Third, in our ex-
2(a) and 2b). Two major differences between these two tended system, the on-off criticality can be self-organized.
types of figures, which have fundamental significance inPrecisely, asr> o (not equal too ), the time evolutions of
practice, can be seen. First, in Figécj2and 2d), the enve- e forced site and some near sites do not obey -tHe
lope of the deviations from. the T282 state is no longer fro'power law. An exponential decay tail increasesas o,
zen. It seems that the excited siteslled excitonsform a

space like a Brownian particle. In Fig(eé3 we plot the time 3 .
T against, whereT, is the time for thé th site to get excited € —2 Power law even at large—o.. As the distance
[i.e., |xy(i) —X| becomes larger than 0.p®or the first time.  |i—L/2—1] is sufficiently large, all sites show perfeets
These first passage time plots are very similar to those of thpower-law behavior shown in Fig(®. Therefore, the on-off
random walk. Second, in Figs(@ and 2d) the influence of intermittency criticality can be organized by the system itself
the local excitation is global. The cluster of excitons maythrough the mutual coupling. The final important point is that
walk, in a random manner, to full lattice length. We havelocal response changes to global response exactly at the mo-
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FIG. 4. (a) The same as Fig. (B) with C replaced by
C=0.0075. A small bias can only slightly change the shape of the
envelope of the chaotic region. The envelope is still frofbnThe
same as Fig. ) with C=0.0075, the plotted iterations are from
n=21 900 ton=22 100. The clusters of excitons are pushed to the
right, and move far away from the forced site in a much shorterd(b) while 1.4x 10° iterations for Fig. 2d)]. It seems that
time [in comparison with Figs. @) and Zd)]. Thus the transporta- clusters of excitons are pushed by a constant force to the
tion property is entirely changed by the small bias in the globalright as they make random walks. From Fig&)4and (4(b)
response cas€c) x,(181) plotted van. The nature of on-off inter- it is clear that the transportation property is not much
mittency is preserved after biag) The distribution of laminar changed by bias in the local response case, while in the glo-
phase for(c). Perfect— 3 power-law decay is still prevailing. The bal response case a small bias may totally change the trans-
dashed line is the perfeet 2 power-law decay. The dashed lines in POrtation characteristics of the system by yielding a finite
the following figures have the same mean. mobility of the excited defects. In the case®# 0 we again

find that the motions of the sites are of on-off intermittency
ment when the normal chaotic std&hown in Fig. 2b)] is [see Fig_. 4c)], and for the sites far away fr_om_the_forced site
replaced by the on-off intermittency state. Therefore, there i§1€ scaling property of the off state distribution is the same
an intimate relation between these two interesting transitionsggs that shown in Fig. (&), namely, —3 power-law decay
the phase transition from a local response to a global one aridee Fig. 4d)]. Here the “off” state is the asymmetric spa-
the phase transition to spatiotemporal intermittency. Nevertiotemoral chaos shown in Fig(&. In Fig. 5 we perform the
theless, the mechanism underlying this link is unknown andame computation as in Fig(é8. A biased random walk is

FIG. 5. The same as Fig.(@ exceptC=0.0075. Clusters of
bursts make biased random walks.

should be further investigated. obvious, and the time for excitons to move a large distance is
much shortened in comparison with the random walk in the
Il. SPATIOTEMPORAL INTERMITTENCY BASED Syrgrr?et”‘? C':f]L ;"?‘Sg' dally ch e d .
ON T2S2 STATE IN ASYMMETRIC CML anging the bia€ may essentially change the dynamics

of the system. In Fig. 6 we take a considerably lafge

At o>0., andC=0, excitons may move too far away (C=0.04). From Fig. 6) to Fig. 6d) we gradually increase
from the forced site by random walks. However, the time forthe local injectiono. At =0, we still have a stable T2S2
excitons to move tdo=1 (ori=L) is very long ad_ is large.  state[Fig. 6(@)]. Increasingo, we first find an interesting
A small bias[nonzeroC in Egs. (2)] provides a constant phenomenon of state splittiférig. 6(b)]: the original T2S2
force to these excitons and greatly reduces the propagaticstate bifurcates to a T4S4 state. In Figc)6 by further in-
time. In Fig. 4a) we do the same computation as in Fig)2 creasingo, the T4S4 state is replaced by a chaotic state.
except we replac€=0 with C=0.0075. The bias does not Nevertheless, the deviation from the T4S4 state again decays
much change the system dynamics: the system is still chaotexponentially as the site distance from the forced site in-
and the response of the system to the local excitation is stiltreases. In Fig. @) we find a global chaos band merge via
local. The only difference between Figgaand 2Zb) is that  spatially global crisis. The patterns and bifurcations shown in
the symmetry(betweeni—L/2—1 andL/2+1—i) of the Fig. 6 have some features essentially different from those in
envelope existing in Fig.(®) is broken in Fig. 4a). In Fig. Figs. 1a-1(c). When we further increases to
4(b) we do the same thing as in Figgcp, except we replace o> o.~0.0665, we find random bursts from the two chaotic
C=0 byC=0.0075. With this small bias clusters of excitons bands, which start from the forced site and propagate to the
move to the sites far away from the forced site in time muchright very quickly. In Figs. 7@ and 7b) we plot the itera-
smaller than that without biag2.2x 10* iterations for Fig. tions for each site froon=1500 to n=1600, and from
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FIG. 7. 0=0.067. All other parameters are the same as in Fig. 6.
FIG. 6. a=4, €=0.15, andC=0.04. (a) 0=0. The figure is  (a) All data of iterations frorm= 1500 to 1600 are plotted. Chaotic
plotted in the same way as Fig(al. The same T2S2 state is as- bursts from the chaotic bands Figdpare excited from the forced
ymptotically approached from random initial preparatiols)  site. (b) All data of iterations fromn=1700 to 1900 are plotted.
0=0.042. Global state split is observed; that is sharply differentExcitons are quickly created and move to the rigla). x,(181)
from the behavior of Fig. @). (c) 0=0.054. The system state is plotted vsn. A trace of on-off intermittency can be still seen, but

chaotic. (d) 0=0.066. Four chaotic bands fairly merge to two large laminar phase segments can hardly be obsefsed@he lami-

bands. nar phase distribution dt). One finds a large- 2 power-law scal-

) ing segment followed by an exponential decay tail.
n=1700 ton= 1900, respectively. Some features are worth-

discussing. First, the clusters of excitons are well centralizegvider parameter regions? In particular, can we find the same
in Figs. 4c), 2(d), and 4c) while they become much less type of response behavior when the system state is spa-
centralized in Figs. (&) and 1b). The quick creations and tiotemporal chaos without external injections? In this sec-
quick propagations of burstsaused by larg€) weaken and  tion, we come back to the symmetric CML. Wi@=0, the
destroy the centralized form, and make bursts distributed in dynamical behavior of Eqgl) has been extensively investi-
wide space region. Nevertheless, the feature observed igated. It is well known that the system state is spatiotemporal
Figs. 2c), 2(d), and 4c) that all sites far away from the chaos ata=4 ande=0.125. In Fig. 8a) we takeL =300,
forced site spend most of time in the vicinity of the chaoticand plot the asymptotic state of the system. Now we inject an
bands of Fig. &) (then the bursts must be quickly excited external force on the site=151; the responses of different
and quickly annihilatedcan be still found in Figs. (@ and  sites are shown in Figs(i8—8(d). From these plots we find
7(b). This feature is a characteristic of intermittency. In Fig. some interesting features. By local injection we can effec-
7(c) we plot the time evolution ok,(181) against; the tively suppress spatiotemporal chaos in a certain parameter
intermittency nature can be again clearly seen. In Fid) 7 region (0.011% ¢, <0< a,~0.0264). It is really surprising

we plot the laminar phase distribution of the time series ofthat a simple constant injection at a single site can play so
Fig. 7(c). The “off" state for this case is the asymmetric effective a role in suppressing chaos in the entire extended
spatiotemporal chaos in Fig(d. The large linear segment system. This point will be further investigated in our future
shows— 2 power-law scaling caused by the on-off intermit- works. At o,~0.0264, there is a jumfphase transitionto
tency of the system dynamics, and the exponential decay ispatiotemporal on-off intermittency. As>o,, bursts are

the largen side indicates that the laminar phase can hardlyeXxcited from the forced cell, and can propagate in the entire
persist for a long time due to the quick propagation of burstspatial medium; that is similar to the behavior of Figéc)2

for largeC. and 2d).
We takeo=0.0265 as an example. In Figga@and 9b)
IV. EXCITATIONS FROM A BASIC SPATIOTEMPORAL we present space-time plots produced in the same way as in
CHAOTIC STATE AND THEIR PROPAGATIONS Figs. 4c) and Zd). We find similar clusters of bursts. These

clusters start from the forced cell and wander too far away in
In the previous sections we found a phase transition of théhe manner of random walk. In Fig(® we plot the time
system response to a local injection from a local to a globateries of the site= 131; the on-off nature of intermittency is
response, associated to a spatiotemporal on-off intermiklear. The essential difference between Fig.) @nd all the
tency, when the system takes a T2S2 periodic wave statgrevious time series of on-off intermittency is that now the
without excitation ¢-=0). It is interesting to ask whether the basic “off” state (laminar phaseis characterized by spa-
effect is generic; i.e., can we find a similar phenomenon irtiotemporal chaos bands with large width. In FigdPwe
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FIG. 9. =0.0265; the other parameters are the same as in Fig.
FIG. 8. a=4, C=0, e=0.125, and_=300. () 0=0, the spa- 8. (a) All data of iterations f_rorm:58 000 to_58 100 _are plotted. _

tiotemporal chaotic state of Eql). The figure is plotted by 100 Some clusters of bursts excited from the basic ch_aotlc_bands pf Fig.
iterations after the transient process. Two chaotic bands are asymf(@ can be observedb) The same aga) except the iterations being
totically approachedb) x,(151) vso after the transient process is 10Mn=70 000 to 70 100. Exciton clusters make random was.
excluded. In the region 0.01470;< o< 0,~0.0264 chaos is ef- *n(131) plotted vs1. On-off intermittency is obviougd) The lami-
fectively suppressed. At= -, a crisis of the chaotic region expan- "Nar phase distribution dt). The spatiotemporal state of Figa8is
sion occurs(c) x,(148) vso after the transient process. Character- "€garded as the laminar phase state.
istic changes at botlx; ando, can be found(d) x,,(121) vso after
the transient process. Chaos is still effectively suppressed in thexpected to occur at a critical point of phase transition to
region o, <o<o,. At o,, a burst to large scale chaotic motion on-off intermittency. This criticality iself-organizedduring
occurs. the propagation of excitons.

It is important to reveal the mechanisms underlying all of
plot the laminar phase distribution at); a perfect —2 the above significant features. Up.ur)til now, we had no clear
power law scaling is identified. This critical power law can @nSWers. Nevertheless, a heuristic explanation of self-
be equally found for all cells withi — 151> 1. It is worth- organized criticality of the on-off intermittency may be the
while remarking that the global response of the system tdollowing. The critical — 3 power-law scaling is an intrinsic
local injection appears before the on-off intermittency in Fig.behavior of the coupled system, irrelevant to the external
8 (even in Fig. 6 in a strict senseHowever, the global injection. Injection plays the role only stimulating the sites
exciton propagationgrandom walks in Fig. 9 and biased away from the “off” state and maintaining excitation by
walks in Fig. 7 are obviously related to on-off intermittency. continuously injecting “energy.” The sites near the forced
one are strongly influenced by the injection and exhibit a
clear exponential tail of laminar phase length distribution,
while the dynamics of sites far from the forced site is much

The features, a phase transition of the system response Igss influenced by the injection and keeps the intrinsic fea-
a local injection from local response to global response, angure of the system, exhibiting a pure? power-law decay.
on-off intermittency after the phase transition, are rather gecomparing the burstérom periodic states or laminar cha-
neric. They are observed for both symmetric and asymmetrigtic bands in this paper with the defects in Refs,15,16,
CML’s, and found in different parameter regions when theye find that the former mechanism is very similar to the
system states without the injection can be both regiler  |atter. In our case defects are continually created from the
riOdiC) and chaotic. It is emphasized that the generiC featureﬁ)rced site and propagate too far away. What we have essen-
are not sensitive to the nature of the injection. For instance, ifig|ly advanced from Ref5] is that weak local forcing can-
we replace the constant foreein Egs.(2) by a stochastic not affect the global behavior of the spatiotemporal system
force, the same phenomena can be observed aq vl (or, say, small defects excited by the injection cannot propa-

In the discussions of the previous sections, a feature Ofate in the mediui there is a phase transition to global

self-organized criticality is also worthwhile remarking upon. response characterized by the large distance propagation of
The laminar phase distributions of the time series of sitegjefects.

near the forced site have clear exponential decay in the large The above explanation of the mechanism of self-
time regime. However, withC| <1 for the sites far from the  organized criticality of on-off intermittency can be convinc-
forced cell the laminar phase distributions show, identicallyingly confirmed by the following self-excited CML models.

perfect— 2 power-law scaling, i.e., manifest behavior that is In the previous sections we always took evgrthen laminar

V. MECHANISM AND SELF-EXCITED CML SYSTEMS
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FIG. 10. 0=0, L=301, all other parameter are the same as in FIG. 11. (8)—(d) are produced in exactly the same way as Figs.
Fig. 1. (a) After transient process we plot data of 100 iterations.10(a)—-10(d), respectively, except that the coupling is changed to
Centralized clusters of bursts from the basic T2S2 state can be=0.125 at which the laminar phase is a spatiotemporal chaos
clearly observed(b) x,(1) plotted vsn. On-off intermittency from  rather than the T2S2 periodic state. It is surprising that adding one
T2S2 state is obviougc) Laminar phase distribution @b). Perfect  more site to the system of Fig(é can change the system dynamics
— 2 power-law scaling is observe@t) The laminar phase distribu- SO Significantly.
tion averaged from all the 301 sites. The distribution is essentially
the same as Fig. 10 with fewer fluctuations. of on-off intermittency are the intrinsic properties of the mo-

tions of all the sites without external injection, when the

phase states are stable, and instability to on-off intermittenc§yStem is in strong spatiotemporal chaos.
is induced by an external local injection. What happens when From Figs. 10 and 11, we can further understand the
we take odd_? It is clear that if we take all the same param- mechanism of the on-off intermittency in our model. With
eters as those in Fig.(d), except replacing. =300 by 301, e€venL, there is a globally stable state for our CML model
the T2S2 state cannot be stable due to mismatch of oddhe T2S2 state in Fig.(&) and the spatiotemporal chaotic
number of sites. Witha=4, €=0.15, ¢=C=0, and State in Fig. 8)]. By injecting a small local forcer, we can
L=301, we plot the space-time state of the system in Figchange the system dynamics localince the original state
10(a) in the same manner as in Fig(c2 a cluster of bursts is stable and most of the sites move in the vicinity of the
appears without external forcing. In Fig.(bpwe record the ~ original se}. As the forcing strength exceeds a critical value,
data of the time series of an arbitrary site=(1); the on-off  the system is driven to the boundary of a kind of instability.
type of intermittency is clearly shown. Now the “off” state Over this critical value, burstedefects from this set are
is the exact T2S2 state. In Fig. (), the laminar phase dis- €xcited from the forced site and propagate in space. How-
tribution of (b) is presented, showing perfect critical 2 ever, there is no other stable state for the system; all sites
’ 2

ower-law decay. In Fig. 16), the laminar phase distribu have a strong tendency to go back to the original positions
b Y g. 20, b . through stable manifolds of the original set by way of defect
tion averaged from the laminar phases of all the 301 sites, we_. o . ! S
: . ) : pair annihilationg15,16. With continual excitation by the
get the same straight line with much fewer fluctuations. S ; . -
local injection, the defect creation, propagation, and annihi-

It is not surprising to find burst$or defect$ from the . ! ; .
I ) lation processes lead to the spatiotemporal intermittency.
T2S2 state in Fig. 10 since the odd number of cells does nqt,. ) ]
ith oddL, there is always a site unmatched for the defect-

fit the T2S2 state, and defects can be excited continually b air annihilation, which serves as a source of defect excita-
an unmatched site. However, it is really surprising that Simi_tion Therefore ’this on-off intermittency can persist without
lar behavior can be observed even if the basic laminar phasg .I Lin t,'
is spatiotemporal chaos. Figures(@%11(d) are the same as any local injection.
Figs. 1Qa)-10d) except that the coupling strength is

€=0.125 rather than 0.15. Therefore, the laminar phase is no
longer the regular T2S2 periodic state. It is represented by

the chaotic bands of Flg.@. The on-off intermittency na- This work was supported partially by the Chinese Natural
ture of the system dynamics can be clearly seen in Figsgcience Foundation, and Project of Nonlinear Science and
11(a) and 11b) (note that the dynamic feature is the same foryhe Open Laboratories Project of Academia Sinica. Sun Mi-
any site fromi=1 to i=301 due to the symmetry of the crosystems, Inc., donated a Workstation, and Wolfram Re-
CML). Perfect— 3 power-law scaling is shown in Figs. (@) search, Inc., donated theaTHEMATICA software to the Non-
and 11d), indicating that the characteristics of the criticality linear Dynamics Group at ITP.
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