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A coupled map lattice system is perturbed by a local injection. The system response to the external excita-
tion is investigated. We find a phase transition from local response to a global response. As global response
functions the motions of the sites far from the forced site show critical on-off intermittency. The implication of
the global response to the physical transportation behavior is addressed.@S1063-651X~96!11108-9#

PACS number~s!: 05.45.1b

I. INTRODUCTION

In recent years, much attention in the field of nonlinear
science has been shifted to spatiotemporal systems. The ex-
tremely rich behavior of bifurcations, patterns, spatiotempo-
ral chaos, and fully developed turbulence, and the control of
these objects have become rather active topics. As the sim-
plest model of spatiotemporal systems, the coupled-map-
lattice system~CML! has been extensively investigated over
the recent decade@1–9#. On one hand these CML systems
can be regarded as time-space discretizations of continuous
extended physical systems. Therefore, from the investiga-
tions of these simplest models we can understand the rich
behaviors of much more complicated realistic systems. On
the other hand, some practical systems~such as generation
iterations of biology population distribution! may be repre-
sented directly by space-time maps, then the CML models
are of great importance in their own right. However, one
point of theoretical importance and practical significance
has, to our knowledge, escaped the scope of numerous inves-
tigations: how does the CML system respond to an external
excitation or, in other words, how does a local perturbation
alter the entire nonlinear spatiotemporal system through cou-
plings. The present paper is devoted to this subject.

Specifically, we use the following model as our working
example:

xn11~ i !5~12e! f „xn~ i !…1S e

2
1CD f „xn~ i21!…

1S e

2
2CD f „xn~ i11!…, ~1!

where the mapping functionf (x) is defined as the logistic
map f (x)5ax(12x). We use a periodic boundary condition
xn( i )5xn( i1L), with L being the lattice length. The quan-
tities e andC have clear physical meanings; the former rep-
resents the diffusion strength while the latter the asymmetric
force, or say, a gradient bias. Changinga, e, and C, the
system exhibits very rich patterns, which have been demon-
strated in numerous papers. In Sec. II we focus our attention
on a symmetric CML, i.e., on the parameter regiona54,
C50, 0.1394,e,0.1938, where the system has a single
time-period-2 and space-period-2~T2S2! attractor with even
L. A phase transition from a local response to a global one,

associated with a spatiotemporal intermittency, is observed
when we inject and increase the local excitation. In Sec. III
we consider the asymmetric CML with nonzeroC. Similar
behavior is also found. An interesting excitation transport
forced by gradient bias is clearly seen. In Sec. IV a local
excitation is injected into a spatiotemporal chaotic state; we
again find the transition from local response to global exci-
tation. Some discussion about the mechanism underlying the
intermittency effect will be given in Sec. V.

II. SPATIOTEMPORAL INTERMITTENCY BASED
ON A T2S2 STATE OF SYMMETRIC CML

The stable T2S2 state atL5300, e50.15, andC50 is
shown in Fig. 1~a!, which can be asymptotically~rather
quickly! approached from different random initial condi-
tions. Now we start to investigate the response of the system
to an external perturbation. To do that we modify Eqs.~1! to

x̄ n~ i !5H xn~ i ! if xn~ i !1sd i , L2 11>1,

xn~ i !1sd i ,L/211 otherwise,

xn11~ i !5~12e! f „x̄n~ i !…1S e

2
1CD f „x̄n~ i21!…

1S e

2
2CD f „x̄n~ i11!…. ~2!

In Eqs. ~2! the constant control parameters represents the
strength of the external perturbation injected to the
(L/2)11st site. In Fig. 1 we show the system responses for
different s. Several features are interesting as well as sur-
prising.

In Fig. 1~b! we plot the asymptotic behavior of the forced
site xn(151) againsts. A clear period-doubling cascade
leading to chaos is found. In the chaotic region we find ob-
vious period windows. All other unforced sites also follow
the characteristic bifurcation behavior of the forced site. In
Fig. 1~c! xn(145) has similar bifurcation features like Fig.
1~b!, which can be clearly seen by a proper amplification of
the plots. The most interesting point is the existence of pe-
riod windows @for a more clear view, see Fig. 1~d!# in the
large ~i.e., largeL) CML system. To date, for large CML
systems, to our knowledge, systematic appearances of period
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windows in the chaotic region have not been found~apart
from some parameter regimes of extremely weak coupling,
e50 or e!1). By perturbing a single site we find period
windows in a rather regular way. These windows are dy-
namically stable against arbitrary random initial preparations
and structurally stable against small perturbation of control
parameters.

Comparing Figs. 1~b! and 1~c!, it is clear that the constant
forcing at the central site drives the forced site as well as
unforced ones away from the unperturbed T2S2 state of Fig.
1~a!. However, the deviations of the motions of different
sites from the unperturbed state are different. As
s,0.0622, the farther a site locates from the forced site, the
smaller the deviation. This feature is clearly shown in Figs.
2~a! and~b!. Actually, for the (L/2116m)th site the devia-
tion is no longer visible asm.10, no matter whether the
motion is periodic@Fig. 2~a!# or chaotic@Fig. 2~b!#. The in-
fluence of the external excitation is local. It can affect only
the motions of the sites in the neighborhood of the forced
site. The deviations caused by the forcing damps exponen-
tially as the site distancem increases. An empirical formula

ux~L/2116m!2 x̂u<uA~s!ue2bm, ~3!

well fit the actual deviation from the lower line of Fig. 1~a!
for both periodic and chaotic states. In Eq.~3!, x̂5(x1 ,x2) is
the T2S2 state. The envelopes of the deviation shown in Fig.
2~a! or 2~b! are time independent. After short transient itera-

tions, the envelopes are asymptotically approached and fro-
zen forever. The amplitude ofA(s)5(A1 ,A2) depends on
the forcing strength. The decay exponentb is independent of
the values ofs andL ~if L is large enough ands is not too
large, of course!, but depends one, a, and the way in which
the sites couple to each other~e.g., nearest-neighbor cou-
pling, or next-nearest-neighbor coupling, or etc!. At the pa-
rameters of Fig. 1 we findb'0.52. Actually, the exponent
b can be calculated exactly. The main points for computa-
tions are the following. First, asu i2L/221u is large, linear-
ization of the derivations from the period-2 state can be
valid. In the linear case margin certainly maps to margin.
Therefore, the margin is a stationary period 4 state of the
system. Inserting Eq.~3! to the linearized Eq.~1! we imme-
diately obtain

a~12e!~122x1!A12@ae~122x2!sinhb11#A250,

@ae~122x1!sinhb11#A11a~12e!~122x2!A250,
~4!

leading to the condition

U a~12e!~122x1! 2@ae~122x2!sinhb11#

@ae~122x1!sinhb11# a~12e!~122x2!
U50,

~5!

from which b can be given analytically. Ata54, e50.15,
we havex150.458 414 andx250.898 729, and then get
b'0.52, which is confirmed by numerical simulations.

FIG. 1. ~a! The asymptotic state of the CML, Eqs.~1! @or Eqs.
~2! at s50#, at a54, e50.15,C50, andL5300. The same pa-
rameters are taken in Figs. 1–3. The initial condition is that each
site takes a random number in the interval@0, 1#. The figure is
plotted by 300 iterations after the transient process. A single stable
T2S2 attractor is identified.~b! xn(151) vs s after the transient
process is excluded. Ats5sc50.0622, a crisis of chaotic region
expansion occurs.~c! xn(145) vss after the transient process is
excluded. Ass,sc , the deviation from the T2S2 state of~a! is
small. However, afters.sc , a burst of deviation is observed.~d!
A blowup of a periodic window region in~b!. The same window
can be seen in chaotic regions for each site in the same parameter
regime.

FIG. 2. ~a! xn( i ) data plotted for each site in 1500 iterations at
s50.048 after the transient process. The envelope of the deviations
from T2S2 is frozen.~b! The same as~a! with s replaced by
s50.062. The deviation envelope is also frozen and the response of
the system to the excitation is local.~c! The same as~a! with
s50.063. The plotted iterations are fromn542 000 to
n542 300. Clusters of bursts from the basic state of~b! can be
observed.~d! The same as~c! with plotted iterations being from
n51.423105 to n51.4233105. The clusters of excitons move too
far away from the forced site.
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The final and the most important feature is that there ex-
ists a characteristic change, or say, a phase transition in the
system response to the excitation, which happens at
sc50.0622. The system behaviors fors,sc ands.sc are
totally different@see Figs. 2~b! and 2~c!#. In the former case,
the sites far from the forced site stay in the vicinity of the
unperturbed T2S2 state, and the system response to the ex-
citation has a local nature, obeying the restriction Eq.~3!.
However, in the latter case, even the sites far away from the
forced one may wander in the entire variable space. The law
of local response of Eq.~3! is completely broken. The sys-
tem response to a local injection is global. In order to con-
firm the transition from a local to a global response, we
present Figs. 2~c! and 2~d!, where we plot the system state
for two different time periods in the same manner as Figs.
2~a! and 2~b!. Two major differences between these two
types of figures, which have fundamental significance in
practice, can be seen. First, in Figs. 2~c! and 2~d!, the enve-
lope of the deviations from the T2S2 state is no longer fro-
zen. It seems that the excited sites~called excitons! form a
centralized cluster; this cluster keeps moving and wanders in
space like a Brownian particle. In Fig. 3~a! we plot the time
T againsti , whereTi is the time for thei th site to get excited
@i.e., uxn( i )2 x̂u becomes larger than 0.03# for the first time.
These first passage time plots are very similar to those of the
random walk. Second, in Figs. 2~c! and 2~d! the influence of
the local excitation is global. The cluster of excitons may
walk, in a random manner, to full lattice length. We have

tried L5500 andL51000. In all cases, we find all sites can
be excited, though it takes a long time for the excitons to
propagate to the sites very far from the central site. On the
contrary, in Figs. 2~a! and 2~b! the influence is purely local,
as we described previously. The only difference between the
control parameters of Figs. 2~d! and 2~b! is thats50.062 for
the latter and 0.063 for the former. A slight change in the
control parameter induces an essential change of the system
behavior; this convinces us of the existence of a phase tran-
sition from a local response to a global response. We would
like to emphasize that the property of global response is of
crucial importance for realistic network systems. If global
response is identified, on one hand, one may detect an exter-
nal signal from a large distance; on the other hand, one may
effectively influence and control large extended systems by a
local injection. In both cases the applications of this global
response are unlimited.

To further investigate the characteristic features of the
motion of the system fors.sc , we record the time evolu-
tions of the 151st and 141st sites in Figs. 3~b! and 3~c!. The
motion of ~c! is of typical on-off intermittency@10–14#; i.e.,
it stays at the ‘‘off’’ state for a very long time, and suddenly
departs quickly from, and then returns quickly to, the ‘‘off’’
state. The ‘‘off’’ state is defined by Eq.~3!. In Fig. 3~d! we
plot the scaling property of the probabilityPn for the 141st
and 131st sites, wherePn represents the probability of the
laminar phase of lengthn, namely,Pn5Mn /N, with N being
the total number of the segments of the laminar phase, and
Mn the number of that of lengthn. The threshold for the
laminar phase is defined as

ux~ i !2 x̄~ i !u,t51023, ~6!

where x̄( i ) is given by Eq.~3!, i.e., the ‘‘off’’ state. The
definition of the laminar phase for the other cases is also
given by Eq.~6!. But the ‘‘off’’ state x̄( i ) is different from
the others. The scaling curves show perfect23/2 power-law
decay of the connected time length of the off state; that fur-
ther confirms the critical on-off intermittency. We have also
tried i5121 and i5101, and got the same scaling curve.
There are several points worth making for the on-off inter-
mittency in our model. First, to drive the system to an on-off
intermittency state we vary a constant forces rather than a
noise force; thus the control parameter isstatic rather than
dynamic. Second, when the on-off intermittency occurs the
off state of the system isspatiotemporal chaosrather than a
static or periodic state. This basic chaotic state offers a dy-
namic origin for the on-off intermittency. Third, in our ex-
tended system, the on-off criticality can be self-organized.
Precisely, ass.sc ~not equal tosc), the time evolutions of

the forced site and some near sites do not obey the2 3
2

power law. An exponential decay tail increases ass2sc
increases. As the distance of sites from the forced site in-
creases, the scaling behavior of these sites becomes closer to

the 2 3
2 power law even at larges2sc . As the distance

u i2L/221u is sufficiently large, all sites show perfect2 3
2

power-law behavior shown in Fig. 3~d!. Therefore, the on-off
intermittency criticality can be organized by the system itself
through the mutual coupling. The final important point is that
local response changes to global response exactly at the mo-

FIG. 3. ~a! Ti plotted againsti . Ti is the iteration number for the
i th site to be excited for the first time.@A site is regarded to be
excited asuxn( i )2 x̂u.0.03, wherex̂ is the T2S2 state of the unper-
turbed system.# The Ti behavior is very similar to that of random
walks. ~b! xn(151) plotted vsn; the motion seems to be of on-off
intermittency.~c! The same as~b! for xn(141), a motion of typical
on-off intermittency.~d! The distributions of laminar phases for

141st and 131st sites. A perfect2
3
2 power-law decay is identified.

The solid and dashed lines represent those of 141st and 131st sites,
respectively.
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ment when the normal chaotic state@shown in Fig. 2~b!# is
replaced by the on-off intermittency state. Therefore, there is
an intimate relation between these two interesting transitions,
the phase transition from a local response to a global one and
the phase transition to spatiotemporal intermittency. Never-
theless, the mechanism underlying this link is unknown and
should be further investigated.

III. SPATIOTEMPORAL INTERMITTENCY BASED
ON T2S2 STATE IN ASYMMETRIC CML

At s.sc , andC50, excitons may move too far away
from the forced site by random walks. However, the time for
excitons to move toi51 ~or i5L) is very long asL is large.
A small bias @nonzeroC in Eqs. ~2!# provides a constant
force to these excitons and greatly reduces the propagation
time. In Fig. 4~a! we do the same computation as in Fig. 2~b!
except we replaceC50 with C50.0075. The bias does not
much change the system dynamics: the system is still chaotic
and the response of the system to the local excitation is still
local. The only difference between Figs. 4~a! and 2~b! is that
the symmetry~betweeni2L/221 andL/2112 i ) of the
envelope existing in Fig. 2~b! is broken in Fig. 4~a!. In Fig.
4~b! we do the same thing as in Figs. 2~c!, except we replace
C50 byC50.0075. With this small bias clusters of excitons
move to the sites far away from the forced site in time much
smaller than that without bias@2.23104 iterations for Fig.

4~b! while 1.43105 iterations for Fig. 2~d!#. It seems that
clusters of excitons are pushed by a constant force to the
right as they make random walks. From Figs. 4~a! and~4~b!
it is clear that the transportation property is not much
changed by bias in the local response case, while in the glo-
bal response case a small bias may totally change the trans-
portation characteristics of the system by yielding a finite
mobility of the excited defects. In the case ofCÞ0 we again
find that the motions of the sites are of on-off intermittency
@see Fig. 4~c!#, and for the sites far away from the forced site
the scaling property of the off state distribution is the same

as that shown in Fig. 3~d!, namely,2 3
2 power-law decay

@see Fig. 4~d!#. Here the ‘‘off’’ state is the asymmetric spa-
tiotemoral chaos shown in Fig. 4~a!. In Fig. 5 we perform the
same computation as in Fig. 3~a!. A biased random walk is
obvious, and the time for excitons to move a large distance is
much shortened in comparison with the random walk in the
symmetric CML case.

Changing the biasC may essentially change the dynamics
of the system. In Fig. 6 we take a considerably largeC
(C50.04). From Fig. 6~a! to Fig. 6~d! we gradually increase
the local injections. At s50, we still have a stable T2S2
state @Fig. 6~a!#. Increasings, we first find an interesting
phenomenon of state splitting@Fig. 6~b!#: the original T2S2
state bifurcates to a T4S4 state. In Fig. 6~c!, by further in-
creasings, the T4S4 state is replaced by a chaotic state.
Nevertheless, the deviation from the T4S4 state again decays
exponentially as the site distance from the forced site in-
creases. In Fig. 6~d! we find a global chaos band merge via
spatially global crisis. The patterns and bifurcations shown in
Fig. 6 have some features essentially different from those in
Figs. 1~a!–1~c!. When we further increases to
s.sc'0.0665, we find random bursts from the two chaotic
bands, which start from the forced site and propagate to the
right very quickly. In Figs. 7~a! and 7~b! we plot the itera-
tions for each site fromn51500 to n51600, and from

FIG. 4. ~a! The same as Fig. 2~b! with C replaced by
C50.0075. A small bias can only slightly change the shape of the
envelope of the chaotic region. The envelope is still frozen.~b! The
same as Fig. 2~c! with C50.0075, the plotted iterations are from
n521 900 ton522 100. The clusters of excitons are pushed to the
right, and move far away from the forced site in a much shorter
time @in comparison with Figs. 2~c! and 2~d!#. Thus the transporta-
tion property is entirely changed by the small bias in the global
response case.~c! xn(181) plotted vsn. The nature of on-off inter-
mittency is preserved after bias.~d! The distribution of laminar

phase for~c!. Perfect2 3
2 power-law decay is still prevailing. The

dashed line is the perfect2
3
2 power-law decay. The dashed lines in

the following figures have the same mean.

FIG. 5. The same as Fig. 3~a! exceptC50.0075. Clusters of
bursts make biased random walks.
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n51700 ton51900, respectively. Some features are worth-
discussing. First, the clusters of excitons are well centralized
in Figs. 2~c!, 2~d!, and 4~c! while they become much less
centralized in Figs. 7~a! and 7~b!. The quick creations and
quick propagations of bursts~caused by largeC) weaken and
destroy the centralized form, and make bursts distributed in a
wide space region. Nevertheless, the feature observed in
Figs. 2~c!, 2~d!, and 4~c! that all sites far away from the
forced site spend most of time in the vicinity of the chaotic
bands of Fig. 6~d! ~then the bursts must be quickly excited
and quickly annihilated! can be still found in Figs. 7~a! and
7~b!. This feature is a characteristic of intermittency. In Fig.
7~c! we plot the time evolution ofxn(181) againstn; the
intermittency nature can be again clearly seen. In Fig. 7~d!
we plot the laminar phase distribution of the time series of
Fig. 7~c!. The ‘‘off’’ state for this case is the asymmetric
spatiotemporal chaos in Fig. 6~d!. The large linear segment

shows2 3
2 power-law scaling caused by the on-off intermit-

tency of the system dynamics, and the exponential decay in
the largen side indicates that the laminar phase can hardly
persist for a long time due to the quick propagation of bursts
for largeC.

IV. EXCITATIONS FROM A BASIC SPATIOTEMPORAL
CHAOTIC STATE AND THEIR PROPAGATIONS

In the previous sections we found a phase transition of the
system response to a local injection from a local to a global
response, associated to a spatiotemporal on-off intermit-
tency, when the system takes a T2S2 periodic wave state
without excitation (s50). It is interesting to ask whether the
effect is generic; i.e., can we find a similar phenomenon in

wider parameter regions? In particular, can we find the same
type of response behavior when the system state is spa-
tiotemporal chaos without external injections? In this sec-
tion, we come back to the symmetric CML. WithC50, the
dynamical behavior of Eqs.~1! has been extensively investi-
gated. It is well known that the system state is spatiotemporal
chaos ata54 ande50.125. In Fig. 8~a! we takeL5300,
and plot the asymptotic state of the system. Now we inject an
external force on the sitei5151; the responses of different
sites are shown in Figs. 8~b!–8~d!. From these plots we find
some interesting features. By local injection we can effec-
tively suppress spatiotemporal chaos in a certain parameter
region (0.0117's1,s,s2'0.0264). It is really surprising
that a simple constant injection at a single site can play so
effective a role in suppressing chaos in the entire extended
system. This point will be further investigated in our future
works. At s2'0.0264, there is a jump~phase transition! to
spatiotemporal on-off intermittency. Ass.s2, bursts are
excited from the forced cell, and can propagate in the entire
spatial medium; that is similar to the behavior of Figs. 2~c!
and 2~d!.

We takes50.0265 as an example. In Figs. 9~a! and 9~b!
we present space-time plots produced in the same way as in
Figs. 2~c! and 2~d!. We find similar clusters of bursts. These
clusters start from the forced cell and wander too far away in
the manner of random walk. In Fig. 9~c! we plot the time
series of the sitei5131; the on-off nature of intermittency is
clear. The essential difference between Fig. 9~c! and all the
previous time series of on-off intermittency is that now the
basic ‘‘off’’ state ~laminar phase! is characterized by spa-
tiotemporal chaos bands with large width. In Fig. 9~d! we

FIG. 7. s50.067. All other parameters are the same as in Fig. 6.
~a! All data of iterations fromn51500 to 1600 are plotted. Chaotic
bursts from the chaotic bands Fig. 6~d! are excited from the forced
site. ~b! All data of iterations fromn51700 to 1900 are plotted.
Excitons are quickly created and move to the right.~c! xn(181)
plotted vsn. A trace of on-off intermittency can be still seen, but
large laminar phase segments can hardly be observed.~d! The lami-

nar phase distribution of~c!. One finds a large2 3
2 power-law scal-

ing segment followed by an exponential decay tail.

FIG. 6. a54, e50.15, andC50.04. ~a! s50. The figure is
plotted in the same way as Fig. 1~a!. The same T2S2 state is as-
ymptotically approached from random initial preparations.~b!
s50.042. Global state split is observed; that is sharply different
from the behavior of Fig. 2~a!. ~c! s50.054. The system state is
chaotic. ~d! s50.066. Four chaotic bands fairly merge to two
bands.
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plot the laminar phase distribution of~c!; a perfect2 3
2

power law scaling is identified. This critical power law can
be equally found for all cells withu i2151u@1. It is worth-
while remarking that the global response of the system to
local injection appears before the on-off intermittency in Fig.
8 ~even in Fig. 6 in a strict sense!. However, the global
exciton propagations~random walks in Fig. 9 and biased
walks in Fig. 7! are obviously related to on-off intermittency.

V. MECHANISM AND SELF-EXCITED CML SYSTEMS

The features, a phase transition of the system response to
a local injection from local response to global response, and
on-off intermittency after the phase transition, are rather ge-
neric. They are observed for both symmetric and asymmetric
CML’s, and found in different parameter regions when the
system states without the injection can be both regular~pe-
riodic! and chaotic. It is emphasized that the generic features
are not sensitive to the nature of the injection. For instance, if
we replace the constant forces in Eqs. ~2! by a stochastic
force, the same phenomena can be observed as well@14#.

In the discussions of the previous sections, a feature of
self-organized criticality is also worthwhile remarking upon.
The laminar phase distributions of the time series of sites
near the forced site have clear exponential decay in the large
time regime. However, withuCu!1 for the sites far from the
forced cell the laminar phase distributions show, identically,

perfect2 3
2 power-law scaling, i.e., manifest behavior that is

expected to occur at a critical point of phase transition to
on-off intermittency. This criticality isself-organizedduring
the propagation of excitons.

It is important to reveal the mechanisms underlying all of
the above significant features. Up until now, we had no clear
answers. Nevertheless, a heuristic explanation of self-
organized criticality of the on-off intermittency may be the

following. The critical2 3
2 power-law scaling is an intrinsic

behavior of the coupled system, irrelevant to the external
injection. Injection plays the role only stimulating the sites
away from the ‘‘off’’ state and maintaining excitation by
continuously injecting ‘‘energy.’’ The sites near the forced
one are strongly influenced by the injection and exhibit a
clear exponential tail of laminar phase length distribution,
while the dynamics of sites far from the forced site is much
less influenced by the injection and keeps the intrinsic fea-

ture of the system, exhibiting a pure2 3
2 power-law decay.

Comparing the bursts~from periodic states or laminar cha-
otic bands! in this paper with the defects in Refs.@5,15,16#,
we find that the former mechanism is very similar to the
latter. In our case defects are continually created from the
forced site and propagate too far away. What we have essen-
tially advanced from Ref.@5# is that weak local forcing can-
not affect the global behavior of the spatiotemporal system
~or, say, small defects excited by the injection cannot propa-
gate in the medium!; there is a phase transition to global
response characterized by the large distance propagation of
defects.

The above explanation of the mechanism of self-
organized criticality of on-off intermittency can be convinc-
ingly confirmed by the following self-excited CML models.
In the previous sections we always took evenL, then laminar

FIG. 8. a54, C50, e50.125, andL5300. ~a! s50, the spa-
tiotemporal chaotic state of Eq.~1!. The figure is plotted by 100
iterations after the transient process. Two chaotic bands are asymp-
totically approached.~b! xn(151) vss after the transient process is
excluded. In the region 0.0117's1,s,s2'0.0264 chaos is ef-
fectively suppressed. Ats5s2 a crisis of the chaotic region expan-
sion occurs.~c! xn(148) vss after the transient process. Character-
istic changes at boths1 ands2 can be found.~d! xn(121) vss after
the transient process. Chaos is still effectively suppressed in the
region s1,s,s2. At s2, a burst to large scale chaotic motion
occurs.

FIG. 9. s50.0265; the other parameters are the same as in Fig.
8. ~a! All data of iterations fromn558 000 to 58 100 are plotted.
Some clusters of bursts excited from the basic chaotic bands of Fig.
8~a! can be observed.~b! The same as~a! except the iterations being
from n570 000 to 70 100. Exciton clusters make random walks.~c!
xn(131) plotted vsn. On-off intermittency is obvious.~d! The lami-
nar phase distribution of~c!. The spatiotemporal state of Fig. 8~a! is
regarded as the laminar phase state.
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phase states are stable, and instability to on-off intermittency
is induced by an external local injection. What happens when
we take oddL? It is clear that if we take all the same param-
eters as those in Fig. 1~a!, except replacingL5300 by 301,
the T2S2 state cannot be stable due to mismatch of odd
number of sites. Witha54, e50.15, s5C50, and
L5301, we plot the space-time state of the system in Fig.
10~a! in the same manner as in Fig. 2~c!; a cluster of bursts
appears without external forcing. In Fig. 10~b! we record the
data of the time series of an arbitrary site (i51); the on-off
type of intermittency is clearly shown. Now the ‘‘off’’ state
is the exact T2S2 state. In Fig. 10~c!, the laminar phase dis-

tribution of ~b! is presented, showing perfect critical2 3
2

power-law decay. In Fig. 10~d!, the laminar phase distribu-
tion averaged from the laminar phases of all the 301 sites, we
get the same straight line with much fewer fluctuations.

It is not surprising to find bursts~or defects! from the
T2S2 state in Fig. 10 since the odd number of cells does not
fit the T2S2 state, and defects can be excited continually by
an unmatched site. However, it is really surprising that simi-
lar behavior can be observed even if the basic laminar phase
is spatiotemporal chaos. Figures 11~a!–11~d! are the same as
Figs. 10~a!–10~d! except that the coupling strength is
e50.125 rather than 0.15. Therefore, the laminar phase is no
longer the regular T2S2 periodic state. It is represented by
the chaotic bands of Fig. 8~a!. The on-off intermittency na-
ture of the system dynamics can be clearly seen in Figs.
11~a! and 11~b! ~note that the dynamic feature is the same for
any site fromi51 to i5301 due to the symmetry of the

CML!. Perfect2 3
2 power-law scaling is shown in Figs. 11~c!

and 11~d!, indicating that the characteristics of the criticality

of on-off intermittency are the intrinsic properties of the mo-
tions of all the sites without external injection, when the
system is in strong spatiotemporal chaos.

From Figs. 10 and 11, we can further understand the
mechanism of the on-off intermittency in our model. With
evenL, there is a globally stable state for our CML model
@the T2S2 state in Fig. 1~a! and the spatiotemporal chaotic
state in Fig. 8~a!#. By injecting a small local forces, we can
change the system dynamics locally~since the original state
is stable and most of the sites move in the vicinity of the
original set!. As the forcing strength exceeds a critical value,
the system is driven to the boundary of a kind of instability.
Over this critical value, bursts~defects! from this set are
excited from the forced site and propagate in space. How-
ever, there is no other stable state for the system; all sites
have a strong tendency to go back to the original positions
through stable manifolds of the original set by way of defect
pair annihilations@15,16#. With continual excitation by the
local injection, the defect creation, propagation, and annihi-
lation processes lead to the spatiotemporal intermittency.
With oddL, there is always a site unmatched for the defect-
pair annihilation, which serves as a source of defect excita-
tion. Therefore, this on-off intermittency can persist without
any local injection.
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FIG. 10. s50, L5301, all other parameter are the same as in
Fig. 1. ~a! After transient process we plot data of 100 iterations.
Centralized clusters of bursts from the basic T2S2 state can be
clearly observed.~b! xn(1) plotted vsn. On-off intermittency from
T2S2 state is obvious.~c! Laminar phase distribution of~b!. Perfect

2
3
2 power-law scaling is observed.~d! The laminar phase distribu-

tion averaged from all the 301 sites. The distribution is essentially
the same as Fig. 10~c! with fewer fluctuations.

FIG. 11. ~a!–~d! are produced in exactly the same way as Figs.
10~a!–10~d!, respectively, except that the coupling is changed to
e50.125 at which the laminar phase is a spatiotemporal chaos
rather than the T2S2 periodic state. It is surprising that adding one
more site to the system of Fig. 8~a! can change the system dynamics
so significantly.
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